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Abstract

A numerical study is conducted to investigate turbulent flow and conjugate heat transfer in a concentric annulus

with a heated inner cylinder moving in the streamwise direction. A modified two-equation k–e model with low Reynolds

number treatment near wall is employed to model the Reynolds stress and turbulent thermal field which are based on

Boussinesq�s approximation. The governing equations are numerically resolved by means of a hybrid finite analysis

method. A uniform inlet flow and thermal conditions are specified to consider the effects of entrance of both solid and

fluid regions. For a constant Prandtl number of 6.99 of water flow, calculating results of the time-averaged streamwise

velocity, turbulent viscosity and temperature field are obtained for the Reynolds numbers from 1.0� 104 to 5.0� 105,

rod velocity ratio between 0 and 1.0, and the radius ratio ranging from 0.286 to 0.750. The parametric studies show that

the bigger rod speed ratio or the radius ratio is, the temperature is higher within solid rod. For a certain absolute rod

speed, temperature profile diminishes at both sides of solid rod and fluid as Reynolds number grows. Numerical results

also show that compared with the case of b ¼ 0 where solid rod is stationary, for large rod speed ratio the averaged

axial velocity and turbulent viscosity profiles have substantial deformations, that is, the gradient of averaged axial

velocity and turbulent viscosity near rod surface greatly reduced by the axial movement of solid rod.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problems of heat transfer and turbulent flow in

concentric annuli with moving inner solid cores are en-

countered in various industrial applications, such as in

manufacturing processes of extrusion and drawing, in

cooling system of hot rolling for steel rod, in transpor-

tation of trains traveling in a long tunnel, and in nuclear

reactors during emergency core cooling of nuclear fuel

channels. In these cases, the moving core exchanges heat

energy with the surrounding environment continuously,

and the fluid flow can be either laminar or turbulent. In
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this paper we just study the turbulent flow and heat

transfer phenomena.

Barrow and Pope [1] made a simple analysis of tur-

bulent flow and heat transfer in the proposed railway

tunnel between England and France. Shigechi et al. [2]

and Lee and Shigechi [3] obtained analytical solutions

for friction factors and Nusselt number for turbulent

flow and heat transfer in concentric annuli with moving

cores, using a modified turbulence model which is

originally presented by Van Driest [4] and Reichardt [5].

Their study shows that the friction factor decreases

while the Nusselt number increases with an increase in

relative velocity of inner core to the averaged flow ve-

locity. Lee and Kim [6] studied an inverted annular film

boiling during an emergency core cooling of nuclear fuel

channels which involved similar fluid flow and heat

transfer phenomenon. Torii and Yang [7,8] numerically
erved.
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Nomenclature

Cp specific heat at constant pressure, J/kgK

Cl, Ce1, Ce2 empirical constants of k–e model
Cf skin friction factor

k dimensionless turbulent kinetic energy

Nu Nusselt number

P time-averaged pressure, Pa

Pr Prandtl number

Prt turbulent Prandtl number

U axial mean velocity over gap of a annulus,

m/s

u, v time-averaged velocity components in axial

and radial directions

x dimensionless axial coordinate

y dimensionless distance from wall

q heat flux, W/m2

r dimensionless radial coordinate

Re Reynolds number

R1 inner radius of the annulus, m

R2 outer radius of the annulus, m

Pe Peclet number

T time-averaged temperature, K

p dimensionless pressure

m molecular kinematic viscosity, m2/s

mt dimensionless turbulent kinematic viscosity

rk , re turbulent prandtl numbers for k and e

Greek symbols

e turbulent energy dissipation rate

b relative rod velocity or rod speed ratio

h dimensionless temperature

q density, kg/m3

a, at molecular or turbulent thermal diffusivities,

m2/s

r radius ratio

k molecular thermal conductivity, W/mK

/ variable

Subscripts

s solid rod

f fluid

t turbulence

w, 1 inner wall, or solid rod surface

2 outer wall
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investigated the effects of various parameters such as

Prandtl number, relative velocity of inner core, radius

ratio, on turbulent Couette flow and heat transfer in the

same geometry as that in Shigechi�s study [2], by using a
version of low Reynolds number turbulence model by

Launder and Shima [9]. It is found in their investigation

that in the region near inner core, a reduction of velocity

gradient due to its axial movement results in a decrease

in heat transfer performance. Azouz and Shirazi [10]

made an evaluation of several turbulence models for

turbulent flow in concentric and eccentric annuli and

their numerical results showed that a kind of mixing

length model performs as well as low Reynolds two-

equation model [11] except in the case where the annular

gap is narrow.

It is worthwhile to notice that almost all of above

researches are only involved in flow and heat transfer

problems in annular fluid region for a given thermal

boundary conditions, and no considerations are given to

the heat conduction within the inner moving solid cores.

In fact, it is often a basic requirement to know temper-

ature distribution within moving solid rod in some ap-

plications such as hot rolling process where it is very

hard to set a thermal boundary condition on the rod

surface. Therefore, in both solid and fluid regions the

heat transport phenomenon should be discussed to-

gether. When the interaction of heat conduction in solid

rod with convection heat transfer in flow field must be

considered simultaneously, such situations are referred

to as conjugate flow and heat transfer problems. To
authors� knowledge, there is seldom research done be-

fore on the conjugate heat transport phenomena in

concentric annuli with moving inner cores [12].

The main objectives of this paper are to investigate

the turbulent flow and conjugate heat transfer charac-

teristics in concentric annuli with inner moving rod in

the flow direction. A recently developed numerical

scheme called hybrid finite analysis method (HFAM)

[13] is used to discretize the governing equation sets for

both flow and temperature fields in concentric annulus

and the inner solid rod. A modified two-equation k–e
model with low Reynolds number treatment near walls

[14] is employed to model the Reynolds stress and tur-

bulent thermal field which are based on Boussinesq�s
approximation and Reynolds analogy respectively.

Uniform flow and isothermal boundary conditions at

both flow and solid rod inlets are specified to consider

the effects of entrance region. Emphases of our re-

searches are placed on the effects of movement of inner

solid rod, various radius ratio and Reynolds number on

thermal fields in whole domain and heat transfer rate on

the surface of moving rod. Particularly, further atten-

tions are paid on turbulent flow and temperature

properties at outlet of both flow field and solid rod.
2. Governing equations and solution procedure

As shown in Fig. 1, we consider two dimensional

axisymmetric turbulent convection flow and heat trans-



Fig. 1. Schematics of physical model and coordinate system.
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fer coupled with a hot inner solid rod moving in a pipe

concentrically. Assuming that effects of gravity are ne-

glected as well as the effect of buoyancy due to tem-

perature difference, the flow and heat transfer within

both flow and solid areas can be regarded as a steady

axisymmetric problem at stable operation condition. In

two dimensional cylindrical coordinates, the averaged

dimensionless governing equations for a steady turbu-

lent annular flow of incompressible fluids and conjugate

heat transfer of the translating solid rod are expressed

as,
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o�uu
ox

þ o�vv
or

þ �vv
r
¼ 0; ð1Þ

�uu
�

� 2
omt
ox

�
o�uu
ox

þ �vv
�

� omt
or

� 1þ mtRe
rRe

�
o�uu
or

¼ � o�pp
ox

þ 1

Re

�
þ 2mt

�
o2�uu
ox2

þ 1

Re

�
þ mt

�
o2�uu
or2

þ 1

r
o

or
rmt

o�vv
ox

 !
; ð2Þ

�uu
�

� omt
ox

�
o�vv
ox

þ �vv
�

� 2
omt
or

� 1þ 2mtRe
rRe

�
o�vv
or

¼ � o�pp
or

þ 1

Re

�
þ mt

�
o2�vv
ox2

þ 1

Re

�
þ 2mt

�
o2�vv
or2

þ o

ox
mt
o�uu
or

 !
� 2

Re
�vv
r2
; ð3Þ

�uu
�

� 1

Prt

omt
ox

�
o�hhf
ox

þ �vv
�

� 1

rPef
� mt
rPrt

� 1

Prt

omt
or

�
o�hhf
or

¼ 1

Pef

�
þ mt
Prt

�
o2 �hhf
ox2

 
þ o2 �hhf

or2

!
: ð4Þ

For solid

�b
ohs
ox

¼ 1

Pes

o2hs
ox2

�
þ o2hs

or2

�
þ 1

Pes

ohs
ror

: ð5Þ

We have taken fluid density qf , averaged flow velocity

U , the radius difference of inner and outer cylinders

R2 � R1, and averaged temperature difference between
inner rod and cooling water at their entrance Ts � Tw, as
four characteristic parameters used for normalization of

above governing equations. The general non-dimen-

sional temperature h is defined as

h ¼ T � Tw
Ts � Tw

:

The Reynolds number Re, the fluid Peclet number Pef
and solid Peclet number Pes are based on the following

definitions:

Re ¼ UðR2 � R1Þ=m;

Pef ¼ qfCpfUðR2 � R1Þ=kf ;

Pes ¼ qsCpsUðR2 � R1Þ=ks:

It should be specially pointed out that the energy Eq. (5)

for solid rod is a little different from usual heat con-

duction equation. This is because the solid wire rod

under cooling condition has an axial motion. In Eule-

rian reference frame it can be regarded as a kind of

pseudo-fluid with a constant convection velocity of

b ¼ u0=U , where u0 is the absolute speed of moving rod.
When the axial speed of solid rod is not small, the heat

energy term from convection will be of great impor-

tance.

In above equation sets the Reynolds stress is modeled

by Boussinesq�s hypothesis, while turbulent heat flux is

modeled according to Reynolds analogy, with a con-

stant turbulent Prandtl number, Prt ¼ 0:85, used in this

study. Within the framework of k–e two-equation tur-

bulence model, the turbulent viscosity mt has the fol-

lowing relation with turbulence kinetic energy k and its

dissipation rate e,

mt ¼ Clk2=e;

where Cl is experimental constant. The turbulence ki-

netic energy k and its dissipation rate e are determined
from the following transport equations:
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ðCe1;Ce2; rk ; reÞ are experiment constants whose values

are taken as (1.44, 1.92, 1.0, 1.3) respectively. In the flow

regions very close to walls, a two-layer approach [14] is

used to consider the effect of viscous damping. In this

method, a wall-distance-based turbulent Reynolds

number Rey is defined as

Rey ¼ y
ffiffiffi
k

p
=m:

When Rey < 200, the transport equations for turbulent

dissipation rate e is discarded, while the turbulent vis-

cous coefficient is determined from

mt ¼ Clll
ffiffiffi
k

p
;

where the above length scale is computed from

ll ¼ 0:41C�3=4
l y½1� expð�Rey=70Þ
:

The above equations except for continuity equation can

be written as unified form of 2D steady transport

equation [13]:

2AC1
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where / represents general unknown variable. A, B, C1

and C2 are coefficients of convection terms and diffusion

terms respectively; S is source term. Detail forms of

these coefficients for various equations are listed in

Table 1. For these kinds of general convection–diffusion

equations, a numerical scheme called HFAM [13] is

employed to solve them. HFAM is a kind of improve-

ment based on the traditional finite-analytic method

(FA) which was firstly proposed by Chen et al. [18] and
Table 1

HFAM coefficients of general convection and transport equations
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significantly developed by Chen and Chen [19]. Due to

its built-in analytical nature, particularly for the advec-

tion-dominated flow problem, FA exhibits an excellent

advantage of upwind shift that varies with the local flow

direction and the grid-peclet number. However, the

main drawbacks of FA are that its formulation is

complex, and the finite-analytic coefficients involve one

or more infinite series of exponential functions. Com-

pared with FA, HFAM is a certain combination of in-

terpolation bases of natural exponential functions on

cells and eliminates the original infinite series in the

finite-analytic coefficients. HFAM keeps not only FA�s
feature of upwind shift by itself and it also has greatly

simplified the finite-analytic formulation. For steady

flow HFAM is a scheme with second order accuracy. In

a non-uniform rectangular mesh system, given hi ¼ xi �
xi�1 and kj ¼ rj � rj�1 are step lengths of non-uniform

grid at x and r directions respectively, five-point scheme
of HFAM is as follows:
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Calculations have been performed on a rectangular and

staggered non-uniform gird system. The staggered grid

is used to prevent from yielding non-physical jagged

pressure field in final calculating results. Since pressure

itself has no independent equation, mass continuity is
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enforced by solving the pressure correction equation.

The usual sequence of operations may be performed

precisely in the same way as detailed by Patanker�s
SIMPLE procedure [15] for the staggered grid arrange-

ment. In addition, the temperature equations in both

flow and solid rod have been solved simultaneously in

the calculations.

Now our attention is turned to computational do-

main and boundary conditions. As shown in Fig. 2, the

total domain consists of two parts of flow area and solid

rod. The flow field is the space between outer tube and

inner rod. The radius difference of tube and rod is 5 mm

which is also the length scale for parameter�s normal-
ization. The axial length of annulus is 200 mm which is

according to the size of nozzle and guided tubes. We

chose radius ratio, r ¼ Ri=Ro, as a variable to explore its

effect on heat transfer. The range of radii ratio is from

0.285 to 0.833. For various radius ratio, grid sizes of

240� 62, 240� 65, 240� 90, 240� 100 and 240� 120

are adopted in calculations respectively. The boundary

condition for fluid flow is given as below.

At inlet of flow field, uniform boundary conditions

for velocity, temperature, turbulent kinetic energy and

its dissipation are specified by

u ¼ 1:0; v ¼ 0; hf ¼ 0; k ¼ 4:0� 10�4;

e ¼ C3=4
l k3=2=0:07:

If we assume flow and thermal fields are developed

fully at the flow exit, secondary type boundary condi-

tion,

o/
ox

¼ 0;

is used, where / can be any unknown variable. On the

still wall are non-slip velocity and constant temperature

boundaries,

u ¼ v ¼ 0; hf ¼ 0:

On the moving wall shared by both fluid and solid

domain, similar non-slip velocity boundaries are con-

sidered as

v ¼ 0; u ¼ b;

where b is rod relative speed. On both still and moving

walls, turbulent kinetic energy and its dissipation are set

as
axis

moving wall
rod inlet (wall)

rod outlet (wall)

pipe wall (still)

flow outletflow inlet

Fig. 2. Flow configuration and boundary types.
k ¼ 0; oe=or ¼ 0:

For the heat coupling condition on the moving wall,

the principle of heat flux conservation is applied to both

fluid and solid sides according to Fourier law of heat

conduction,

ðkf þ qfCpfmt=PrtÞ
o�hhf
or

�����
r¼R1=ðR2�R1Þ

¼ ks
ohs
or

����
r¼R1=ðR2�R1Þ

:

In the area of solid rod, only heat boundaries need to

be set. At rod inlet, a constant temperature is

hs ¼ 1:0

and at the exit of rod outlet, secondary type condition

will be applied, that is,

ohs
ox

¼ 0;

which means that the effect of heat conduction of axial

direction at the exit can be neglected. Along rod axis is

the symmetric boundary condition due to axisymmetry

of heat conduction,

ohs
or

¼ 0:
3. Results and discussion

The numerical results and consequent discussions are

divided into three parts to introduce. In part one is the

verification of numerical procedure. Part two shows

temperature fields in the total domain of physical model,

along with thermal properties on the rod surface, say,

Nusselt numbers. The definition of local Nusselt number

is

Nu ¼ qðR2 � R1Þ
ðTs � TwÞkf

����
R¼R1

¼ � oh
or

����
r¼R1=ðR2�R1Þ

:

Part three concerns temperature and averaged tur-

bulent flow velocity profiles at outlet of the computation

domain.

3.1. Validation of the numerical procedure

For validations of the simulation method used in this

paper, at first some previous experimental results avail-

able in literature are used to compared with our calcu-

lation at the same flow and thermal boundary conditions.

Since there is no experimental result on turbulent heat

transfer in concentric annuli with moving inner cores, the

comparisons can only be done for the situations where

both outer wall and an inner rod are stationary. For an

stationary annulus, under uniform wall heat flux and

fully developed flow/thermal conditions Dalle Donne
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and Meerwald [16] presented empirical formulations for

the Nusselt number and friction factor at inner wall

surface as follows,

Nu ¼ 0:0181r�0:2ðTw=T0Þ�0:18Re0:8Pr0:4; ð9Þ

Cf ¼ 0:0615ð1� rÞ0:1Re�0:22: ð10Þ

Figs. 3 and 4 are comparisons of calculated results with

above empirical formulations, where the calculated re-

sults are the values at outlet of flow region. As shown in

Fig. 4, the numerical prediction for friction factor is in

good agreement with formulation (9) and the experi-

mental data by Nouri et al. [17]. Although our calcula-

tion of local Nusselt number does not superpose

correlation (10) completely in Fig. 3, both of them have

similar relationship to Reynolds number. The small

difference between calculated results and empirical for-

mulation (9) may result from the given normalized axial

length of x ¼ 40 which is still not long enough for tur-

bulent flow and heat boundary to develop very much.

Figs. 5 and 6 depict the numerical and experimental
50000 100000
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800

N
u

Equation (9)
Calculation

Fig. 3. Local Nusselt number on inner wall of a stationary

concentric annulus at outlet of x ¼ 40 for Pr ¼ 6:99,

r ¼ 0:5833.

103 104 105
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10-2

10-1

C
f

Exp. -Nouri, et al.
Calculation
Equation (10)

Fig. 4. Skin friction factor on inner wall of a stationary con-

centric annulus at outlet of x ¼ 40 for Pr ¼ 6:99, r ¼ 0:5.

Fig. 6. Predicted Reynolds stress in a concentric annulus of

radius ratio r ¼ 0:5 at outlet of x ¼ 40 for Re ¼ 26; 600.
results of time-averaged axial velocity, Reynolds stress

at flow outlet for Reynolds number of 26,600 in an

stationary annulus with r ¼ 0:5. One can see from Fig. 5

that the experimentally measured velocity is a bit higher

than those computed by Azouz and Shirazi [10] and us,

and the velocity profile of our results is the flattest one

among three results. It is demonstrated again that tur-

bulent flow is indeed not so fully developed as required

by the boundary condition at the flow outlet of x ¼ 40.

Fig. 6 illustrates that the calculated results of Reynolds

stress are in perfect consistence with the experimental

results.

3.2. Temperature fields in whole computation domain and

thermal properties on rod surface

Computations of turbulent flow and temperature

fields have been performed for liquid water with

Pr ¼ 6:99 and hot solid rod of plain carbon steel. Both

materials� properties are listed in Table 2.

Figs. 7–9 show the predicted typical dimensionless

temperature contours in both fluid and solid regions for



Table 2

Material�s properties

Kinematic viscosity m
(m2/s)

Density q (kg/m3) Thermal conductivity

(W/mK)

Specific heat capacity

Cp (J/kgK)

Liquid water 1.004� 10�6 998.2 0.6 4182

Solid plain carbon steel 7854 60.5 434

Fig. 7. Contours of temperature in meridian plane of a con-

centric annulus and a solid rod at Re ¼ 50; 000 and radius ratio

r ¼ 0:5833 for various relative rod speed.

Fig. 8. Contours of temperature in meridian plane of a con-

centric annulus and a solid rod at Re ¼ 50; 000 and rod speed

b ¼ 0:05 for various radius ratio.

Fig. 9. Contours of temperature in meridian plane of a con-

centric annulus and a solid rod at r ¼ 0:5833 and rod speed

b ¼ 0:1 for various Reynolds number.
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different combinations of rod velocity ratio, radio ratio

and Reynolds number. From these results it is found

that increases of rod velocity ratio, radio ratio and

Reynolds number makes the isotherms to be close to the

rod surface, which means temperature gradient as well

as heat transfer on rod surface is stronger at large values

of above parameters. However, these figures also illus-

trate that temperature contours keep higher values

within solid rod in spite of strong heat transfer for large

values of the three parameters respectively. Hence, if

the other two parameters are fixed, the rod moves faster,

the cooling effect is worse; the radius ratio is larger, the

temperature is higher within solid rod; Reynolds number

become bigger which implies more flow rate pass

through annulus, the temperature in solid rod also at-

tains higher values. It is easy to understand the results

corresponding to the first two cases with larger rod

speed and radius ratio, because large rod speed trans-

ports more heat energy into cooling area and increase of

radius ratio means there is relatively more heat energy

contained within solid rod. While an increase of Rey-

nolds number also results in high temperature in solid

rod. As expected, higher Reynolds number flow has

enhanced convection of heat transfer in fluid region as
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shown in Fig. 9(b), but in term of definition of rod rel-

ative velocity b, the absolute speed of rod motion in-

creases as the increase of Reynolds number. So in this

situation, the enhancement of heat convection due to

higher Reynolds number does not counteract the in-

crease of heat energy imported by rod movement.

Figs. 10 and 11 are calculated distributions of Nusselt

number on the moving rod surface. For various axial

positions rather than flow entrance, it is found that the

effects of changing of any certain parameter, such as

Reynolds number and rod relative velocity, on local

Nusselt number are similar. So we just fix an axial po-

sition to discuss the results. In Fig. 10 for the range of

b ¼ 0:01–0:5, local Nusselt number is small at both

small and large rod velocity ratio b. This is because the
heat entering into flow field is relatively small for low

rod speed, and flow velocity gradient becomes smaller

for bigger rod speed at certain Reynolds number. When

rod velocity ratio b is about 0.05–0.1, local Nusselt
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Fig. 10. Predicted distribution of Nusselt number on rod sur-

face for various relative velocity of rod motion, r ¼ 0:5833,

Re ¼ 50; 000.
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Fig. 11. Predicted distribution of Nusselt number on rod sur-

face for various Reynolds number, r ¼ 0:5833, b ¼ 0:1.
number reaches to its peak value. As shown in Fig. 11,

an increase in Reynolds number causes an enhancement

of local Nusselt number on rod surface.

3.3. Temperature and averaged turbulent flow velocity

profiles at outlet of the computation domain

Now let us concern with the flow and thermal

properties at outlet of computation domain. Figs. 12–14

depict the variations of temperature profile along radial

direction at outlet of flow and solid rod for different

Reynolds number, relative speed of solid rod to average

velocity of fluid and radius ratio of the rod to the outer

cylinder respectively. Fig. 12 illustrates the effect of rod

relative speed on temperature at outlet of both solid rod

and fluid and an increase in rod relative speed results in

a higher temperature in solid rod. When the moving

speed of rod is big, a large radial temperature gradient

forms at both sides of fluid and solid rod, which is, to

some extent, helpful to enhance heat transfer on rod

surface. However, this enhancement is not strong en-

ough to counteract the increased heat flux due to the

increment of rod speed. For a fixed rod absolute speed,

as shown in Fig. 13, temperature profile diminishes at

both sides of solid rod and fluid as Reynolds number

grows. Temperature profiles along radial direction at

outlet of rod and fluid for various radius ratio are shown

in Fig. 14, which demonstrates that the larger a radius

ratio is, the higher temperature is obtained in solid rod.

For large radius ratio, temperature profile in solid rod

tends to become uniform, which means less cooling ef-

fect of solid rod.

At last, our discussion is turned to the flow properties

of averaged axial velocity and turbulent viscosity at

flow outlet. Fig. 15 illustrates the radial profiles of time-
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Fig. 12. Predicted non-dimensional temperature profile at

outlet of flow and solid rod for various rod speed ratio

(r ¼ 0:5833, Re ¼ 50; 000).
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Fig. 13. Predicted non-dimensional temperature profile at

outlet of flow and solid rod for various Reynolds number,

(r ¼ 0:5833, bU ¼ 0:1 m/s).
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Re ¼ 50; 000).
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averaged dimensionless axial velocity for different rod

speed ratio b. It is found that as b goes up, the peak

value of axial velocity moves left toward the rod surface,

with the axial velocity in the center region being de-

creased. Compared with the case of b ¼ 0 where solid

rod is stationary, for large rod speed ratio the averaged

axial velocity profile has a substantial deformation. This

implies that the gradient of averaged axial velocity near

rod surface greatly reduced by the axial movement of

solid rod. While at the side close to outer wall, there is

little influence of solid rod motion on the gradient of

averaged axial velocity. Predicted non-dimensional tur-

bulent viscosity at outlet of flow for different rod speed

ratio b is shown in Fig. 16. The change of b seems no
effect on turbulent viscosity in the vicinity of outer wall.

However, as b increases, turbulent viscosity has en-

hanced in the center region inclined to outer wall and

decreased in the area near rod surface. This behavior is

in accordance with the variation of averaged axial ve-

locity in Fig. 15.
4. Conclusions

Numerical predictions have been performed for two

dimensional axisymmetrical turbulent flow and conju-

gate heat transfer in a concentric annulus with a heated

inner cylinder moving in the streamwise direction. A

modified two-equation k–e model with low Reynolds

number treatment near wall is employed to model the

Reynolds stress and turbulent thermal field. The gov-

erning equations are numerically resolved by means of a

HFAM. The following conclusions are derived from the

present study.
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For a steady conjugate heat transfer problem in both

fluid and solid regions, a transformed form of heat

conduction equation like Eq. (5) should be used to take

into consideration of the movement of the solid body.

This treatment is very convenient for general boundary

conditions of computation to be introduced in whole

domain. It is found from predictions that along

streamwise direction as the axial distance away from

flow inlet increases, local Nusselt number on rod surface

decreases continuously for any flow conditions of our

consideration.

The parametric studies show that increases of rod

velocity ratio, radius ratio and Reynolds number have

the isotherms in both fluid and solid regions to be close

to the shared moving surface, which corresponds to

larger heat transfer rate as well as larger temperature

gradient on rod surface. If the other two parameters are

fixed, the rod speed ratio is bigger, or the radius ratio is

larger, the temperature is higher within solid rod.

However, as Reynolds number increases, despite of

correspondent enhancement of heat transfer on rod

surface, the temperature in solid rod still attains higher

values for a certain rod speed ratio. The temperature at

flow and rod outlet comes down along with decrease of

rod velocity and the radius ratio. For a given absolute

rod speed, temperature profile at flow and rod outlet

simply diminishes at both sides of solid rod and fluid as

Reynolds number grows. Numerical results also show

that compared with the case of b ¼ 0 where solid rod is

stationary, for large rod speed ratio the averaged axial

velocity and turbulent viscosity profiles have substantial

deformations, that is, the gradient of averaged axial

velocity and turbulent viscosity near rod surface greatly

reduced by the axial movement of solid rod. While at the

side close to outer wall, there is little influence of solid

rod motion on them.
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